TensorFlow
Reference
Versions
Tensorflow 1.3
- As of Aug. 2017, Tensorflow 1.3 was released.
- [CPU] $ pip3 install --upgrade tensorflow
- [GPU] $ pip3 install --upgrade tensorflow-gpu
Tensorflow 1.0
- As of Feb. 15, 2017, Tensorflow 1.0 was announced.
- Python API stability
- Speedup on multiple GPUs
- tf.Keras
- Installation improvements
- [Experimental] XLA (Accelerated Linear Algebra) is a domain-specific compiler for linear algebra that optimizes TensorFlow computations.
- XLA currently supports JIT compilation on x86-64 and NVIDIA GPUs; and AOT compilation for x86-64 and ARM.
TFlearn guide
TensorFlow Installation (GPU)
- 설치 환경(2017.05.30)
- 1) CUDA 라이브러리 설치(v8.0)
- https://developer.nvidia.com/cuda-downloads
- linux -> x86_64 -> Ubuntu -> 16.04 -> deb(network)
- 파일 다운로드 후 관련 명령어 수행
- 2) cuDNN 다운로드(v.5.1)
- https://developer.nvidia.com/cudnn
- Nvidia 개발자 계정 필요
- 다음 명령 실행
- $ tar xvzf cudnn-8.0-linux-x64-v5.1-ga.tgz
- $ sudo cp -P cuda/include/cudnn.h /usr/local/cuda/include
- $ sudo cp -P cuda/lib64/libcudnn* /usr/local/cuda/lib64
- $ sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
- 3) 다음 명령 실행
- $ sudo apt-get install libcupti-dev
- 4) pip3 설치
- $ sudo apt-get install python3-pip python3-dev
- 5) tensorflow-gpu 설치
- $ pip3 install tensorflow-gpu # Python 3.n; GPU support
- $ python3 -c 'import tensorflow as tf; print(tf.__version__)'
- 기타
- 실행시 SSE, AVX 등 warning 발생하는 것은 신경쓰지 않아도 됨. TF 소스 자체에서 build하면 해결된다고 하나, 굳이 놔두어도 상관없을 듯.
- 상기 설치 후 system restart 한 번 해주면, graphic driver 잘 잡힐 듯.
- IDE로는 py-charm 등 이용.
- Performance Guide
- Winograd conv algorithm 설정(3x3 행렬연산을 위한 tensor 성능 개선)
- $ export TF_ENABLE_WINOGRAD_NONFUSED=1
- # Couldn't open CUDA library libcupti.so.8.0. LD_LIBRARY_PATH
- $ export LD_LIBRARY_PATH=/usr/local/cuda/extras/CUPTI/lib64:$LD_LIBRARY_PATH
Library
- tf.Transform
- ML 전처리를 위한 TensorFlow 라이브러리 (Beam Preprocessing).
- Users define a pipeline by composing modular Python functions, which tf.Transform then executes with Apache Beam, a framework for large-scale, efficient, distributed data processing. --> 그렇다면, 런타임(Serving)에 전처리를 위해서는 Apache Beam을 별도로 설치해야 하나?
- tf.Transform allows users to compute summary statistics for their datasets.
- Edward
댓글 없음:
댓글 쓰기